Федеральное государственное бюджетное образовательное учреждение высшего образования Ярославский государственный медицинский университет Министерства здравоохранения Российской Федерации ФГБОУ ВО ЯГМУ Минздрава России

Рабочая программа дисциплины

ОПТИКА, АТОМНАЯ ФИЗИКА

Специальность 30.05.03 МЕДИЦИНСКАЯ КИБЕРНЕТИКА

Форма обучения ОЧНАЯ

Рабочая программа разработана в соответствии с требованиями ФГОС ВО

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по специальности 30.05.03 Медицинская кибернетика и входит в состав Образовательной программы высшего образования — программы специалитета — по специальности 30.05.03 Медицинская кибернетика.

Рабочая программа разработана на кафедре медицинской физики с курсом медицинской информатики.

Заведующий кафедрой – Фатеев М.М., д-р. биол. наук, профессор

Разработчики:

Мазаева Л.Н., канд. пед. наук, доцент

Согласовано:

Декан лечебного факультета профессор

Филимонов В.И.

«15» июня 2023 года

Утверждено Советом по управлению образовательной деятельностью «15» июня 2023 года, протокол № 6

(подпись)

Председатель Совета по управлению образовательной деятельностью, проректор по образовательной деятельности и цифровой трансформации, доцент «15» июня 2023 года

Смирнова А.В.

1. Вводная часть

1.1. Цель освоения дисциплины состоит в изучении физических свойств и процессов, необходимых для понимания биохимических закономерностей и оборудования, используемого в лабораториях.

1.2. Задачи дисциплины:

- дать общую базу умение находить причинно-следственные связи и использовать фундаментальные физические законы для объяснения явлений;
- сформировать навыки постановки и проведения эксперимента, анализа полученных результатов;
- сформировать научный язык, умение чётко формулировать проблему, быть понятным для специалистов физико-технических и других смежных областей;
- раскрыть физическую основу функционирования различных технических средств;
- обучить физике: в оптике природа электромагнитных волн, оптические явления; в атомной физике спектральные закономерности, свойства атомов и молекул;
- сформировать компетенции в соответствии с требованиями высшего образования.

1.3. Требования к результатам освоения дисциплины

Преподавание дисциплины направлено на формирование общепрофессиональных компетенций:

ОПК-1. Способен использовать и применять фундаментальные и прикладные медицинские, естественнонаучные знания для постановки и решения стандартных и инновационных задач профессиональной деятельности.

Таблица 1. Требования к результатам освоения дисциплины

№	Индекс и номер компетенции	Содержание компетенции (или ее части)	Индикаторы достижения компетенций	Виды контроля
1.	ОПК-1	Способен использовать и	ОПК-1.ИД 1 - владеет алгоритмом основных физико-	Текущий контроль
		применять фундаментальные и	химических, математических и иных естественнонаучных	успеваемости (контроль
		прикладные медицинские,	методов исследований при решении профессиональных	текущей успеваемости при
		естественнонаучные знания для	задач.	проведении учебных занятий
		постановки и решения	ОПК-1.ИД 2 – способен применять естественнонаучные	и рубежный контроль по
		стандартных и инновационных	знания на междисциплинарном уровне в профессиональной	завершению изучения
		задач профессиональной	деятельности	дисциплинарных модулей),
		деятельности		промежуточная аттестация

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к Обязательной части образовательной программы.

Для освоения дисциплины необходимы знания, умения и навыки, формируемые в ходе изучения дисциплин:

Дисциплина Алгебра (школьная)

Знания: операций над элементами множеств произвольной природы

Умения: производить операции над числами и векторами

Навыки: проведения расчётов

Дисциплина Геометрия (школьная)

Знания: пространственных структур, основных теорем

Умения: описывать геометрические структуры в пространстве

Навыки: количественного описания трёхмерных объектов

Дисциплина Физика (школьная)

Знания: физических величин, необходимых для описания явлений природы, основных законов, свойств материи, фундаментальных констант

Умения: решать задачи

Навыки: объяснять и количественно описывать явления природы

Дисциплина Математический анализ

Знания: свойств векторов и операций над ними, основных формул дифференциального и интегрального исчисления

Умения: производить операции над векторами, дифференцировать и интегрировать функции, решать дифференциальные уравнения

Навыки: проведения математических расчётов

Дисциплина Механика, электричество

Знания: основных физических величин и законов механики и электричества Умения: опивать движение, составлять уравнения движения, изображать электрические и магнитные поля, описывать поведение заряженных частиц и систем заряженных частиц в них

Навыки: объяснять и количественно описывать явления природы

Дисциплина Теория вероятности и математическая статистика

Знания: распределений Стьюдента и Фишера, понятий вероятность и плотность вероятности

Умения: описания распределений случайных величин

Навыки: расчёта погрешностей измерений

Знания, умения и навыки, формируемые в ходе освоения данной дисциплины, необходимы при изучении следующих дисциплин образовательной программы:

- общая и медицинская биофизика;
- физиология;
- медицинская электроника;
- органическая химия;
- фармакология;
- общая и медицинская радиобиология;
- молекулярная биология;
- медицинская биохимия;
- принципы измерительных технологий в биохимии;
- общая и медицинская генетика.

3. Объем дисциплины

3.1 Общий объем дисциплины

Общий объем дисциплины -7 зачетных единиц (252 академ.часа), в том числе:

- промежуточная аттестация в форме экзамена 36 академ. часов;
- контактная работа обучающихся с преподавателем 144 академ. часа;
- самостоятельная работа обучающихся 72 академ. часа.

3.2 Распределение часов по семестрам

Таблица 2. Распределение часов контактной работы обучающихся с преподавателем и самостоятельной работы обучающихся по семестрам

	Всего	Распределение часов по	
Вид учебной работы		семестрам	
	академ.часов	Сем. 3	Сем. 4
1. Контактная работа обучающихся с	144	72	72
преподавателем (аудиторная), всего	144	12	12
в том числе:	X	X	X
Занятия лекционного типа (лекции)	36	18	18
Занятия семинарского типа, в т.ч.	108	54	54
Семинары	-	-	-

Практические занятия, клинические	75	36	39
практические занятия	75	30	39
Лабораторные работы, практикумы	33	18	15
2. Самостоятельная работа	72	36	36
обучающихся, всего	12	30	30

4. Содержание дисциплины

4.1. Разделы учебной дисциплины и компетенции, которые должны быть освоены при их изучении

№	Наименование раздела учебной дисциплины	Содержание раздела в дидактических единицах (темы разделов)	Индекс и номер формируемых компетенций
1.	Электромагнитная природа света	Уравнение волны. Уравнение волны в дифференциальной форме. Уравнение электромагнитной волны в дифференциальной форме. Свойства электромагнитных волн. Энергия электромагнитных волн. Телесный угол. Световой поток. Фотометрические и энергетические величины. Сила света, освещённость. Единицы измерения фотометрических величин. Величины, характеризующие протяжённые источники света. Взаимодействие света с веществом. Фотометрические методы анализа. Закон поглощения. Физические величины, используемые в фотометрических методах анализа. Оптическая схема спектрофотометра. Особенности работы и основные характеристики спектрофотометров. Естественный и поляризованный свет. Поляризация при отражении и преломлении. Двойное лучепреломление. Получение и анализ поляризованного света. Поляризаторы. Оптическая	ОПК-1

		активность. Феноменологическая	
		теория оптической активности.	
		Основы молекулярной теории	
		оптической активности. Вращение	
		_	
		плоскости поляризации в	
		магнитном поле. Поляризационный	
		микроскоп.	
		Геометрическая оптика, основные	
		понятия. Явления на границе сред.	
		Удельная и молярная рефракции.	
		Принцип Ферма. Дисперсия света.	
		Причины появления дисперсии.	
		Рефрактометрия. Рефрактометр.	
		Метод полного отражения и	
		скользящего луча. Тонкие линзы,	
		ход лучей, построение	
	_	изображений. Формула тонкой	07774.4
2.	Геометрическая оптика	линзы. Сферические зеркала, ход	ОПК-1
		лучей, построение изображений.	
		Особенности оптических	
		изображений. Аберрации	
		оптических систем. Условие	
		синусов Аббе. Апохромат Аббе.	
		Требования к объективам и	
		окулярам. Окуляр Гюйгенса и	
		Рамсдена. Ход лучей в микроскопе.	
		Основные характеристики	
		микроскопа.	
		Интерференция	
		монохроматических волн.	
		Сложение когерентных и	
		некогерентных волн. Опыты по	
		интерференции Юнга и Френеля.	
		Расчёт интерференционной	
		картины в опыте Юнга. Кольца	
3.	Физическая оптика	Ньютона. Способы повышения	ОПК-1
		контраста изображений в	
		микроскопии. Интерференция на	
		поверхности тонких плёнок.	
		Интерференция в пластинках	
		параллельных лучей. Способ	
		наблюдения интерференционных	
		колец равного наклона.	
	•	•	

		Интерферометр Майкельсона.	
		Интерферометр Жамена. Принцип	
		Гюйгенса-Френеля. Дифракция	
		Френеля на круглом отверстии.	
		Дифракция на щели в	
		параллельных лучах.	
		Дифракционная решётка.	
		Характеристики спектральных	
		приборов: дисперсия, разрешающая	
		способность, дисперсионная	
		область. Разрешающая способность	
		призмы. Разрешающая способность	
		глаза и микроскопа. Спектральные	
		приборы. Фурье-спектрометр.	
		Абсолютно чёрное тело. Свойства	
		равновесного излучения. Закон	
		Стефана-Больцмана. Основные	
		характеристики теплового	
		излучения. Закон Кирхгофа.	
		Уравнение смещения Вина.	
		Формула Рэлея-Джинса. Формула	
		Планка. Теплообмен организма с	
		окружающей средой. Фотоэффект.	
		История открытия, закономерности	
		и объяснение фотоэффекта.	
		Характеристики фотона.	
		Внутренний фотоэффект. Опыт	
		Боте. Тормозное рентгеновское	
4.	Квантовая оптика. Атомные	излучение. Эффект Комптона.	ОПК-1
7.	модели. Спектры атомов	Фотохимические реакции.	Olik 1
		Особенности спектров веществ в	
		различных агрегатных состояниях.	
		Спектральные закономерности.	
		Эксперимент Резерфорда по	
		рассеянию α частиц. Теория	
		рассеяния α частиц. Модель атома	
		Резерфорда. Теория Бора для	
		водорода и водородоподобных систем. Опыт Франка-Герца.	
		• •	
		Характеристическое рентгеновское	
		излучение. Закон Мозли,	
		физический смысл констант,	
		входящих в закон Мозли. Спектры	

		щелочных металлов.	
		Молекулярные спектры.	
ļ		Вращательные и колебательные	
		спектры двухатомных молекул.	
		Комбинационное рассеяние.	
		Люминесценция, её виды.	
		Механизм люминесценции.	
		Люминесцентный анализ. Лазеры,	
		принцип действия, механизм	
		возникновения вынужденного	
		излучения. Гелий-неоновый и	
		рубиновый лазеры. Свойства	
		лазерного излучения. Применение	
		лазерного излучения в медицине и	
	Молекулярные спектры.	биохимии. Дифракция	
5.	Методы изучения	рентгеновского излучения. Условия	ОПК-1
	структуры вещества	Лауэ. Лауэграммы. Условие	
		Вульфа-Брэгга. Метод Дебая-	
		Шеррера. Применение	
		рентгеноструктурного анализа для	
		изучения структуры белков.	
		Гипотеза де Бройля. Интерпретация	
		волн де Бройля и волновой	
		функции. Дифракция электронов.	
		Электронография. Электронный	
		микроскоп. Физические методы в	
		химии: спектроскопические,	
		дифракционные, оптические,	
		использующие электрические и	
		магнитные поля.	
		Соотношения неопределённостей	
		Гейзенберга. Стационарное и	
		временное уравнения Шредингера.	
		Основное уравнение квантовой	
		механики для атомов и молекул.	
	Эпементи кранторой	Частица в потенциальной яме,	
6.	Элементы квантовой механики	решение уравнения Шредингера,	ОПК-1
		выражение для энергии. Принцип	
		соответствия. Поведение частицы в	
		потенциальной яме. Линейный	
		гармонический осциллятор.	
		Квантовая теория	
		водородоподобных систем.	

Пространственное квантование.	
Опыт Штерна и Герлаха. Спин	
электрона. Принцип Паули.	
Периодическая система	
Менделеева. Квантовые состояния	
электрона, заполнение электронами	
оболочек (слоёв) атома. Тонкая и	
сверхтонкая структура спектра.	
Эффект Зеемана. Электронный	
парамагнитный резонанс. Ядерный	
магнитный резонанс.	

4.2. Тематический план лекций

		Сем	естры
$N_{\underline{0}}$	Название тем лекций	№ 3	№ 4
		часов	часов
1.	Электромагнитные волны. Фотометрия.	2	-
2.	Геометрическая оптика. Рефрактометрия. Оптические инструменты.	2	-
3.	Интерференция света. Особенности наблюдения интерференции. Интерферометры.	2	-
4.	Дифракция света. Дифракция Фраунгофера и Френеля.	2	-
5.	Дифракционная решетка. Спектральные приборы.	2	-
6.	Поляризация света.	2	_
7.	Взаимодействие света с веществом. Дисперсия и поглощение света.	2	-
8.	Тепловое излучение.	2	-
9.	Квантовая оптика. Опыты, подтверждающие корпускулярную природу света.	2	-
10.	Люминесценция. Лазерное излучение.	-	2
11.	Особенности спектров веществ. Атомная модель Резерфорда. Теория Бора для водорода и водородоподобных систем.	-	2
12.	Атомные модели. Спектры атомов и молекул.	-	2
13.	Рентгеноструктурный анализ.	-	2
14.	Волновые свойства частиц.	-	2
15.	Элементы квантовой механики. Квантовая теория водорода. Периодическая система Менделеева.	-	2
16.	Строение атомного ядра. Радиоактивность.	-	2
17.	Ядерные реакции.	-	2
18.	Ядерная физика и ее применение в медицине	-	2

4.3. Тематический план практических занятий

			естры
$N_{\underline{0}}$	Название тем практических занятий	№ 3	№ 4
		часов	часов
1.	Вводное. Колебания и волны. История оптики.	3	-
2.	Электромагнитная природа света.	3	-
3.	Фотометрия.	3	-
4.	Контрольная работа по теме "Электромагнитная природа света".	3	-
5.	Фотометрия. Поляризованный свет.	3	-
6.	Поляризованный свет.	3	-
7.	Рубежный контроль по теме "Электромагнитная природа света".	3	-
8.	Геометрическая оптика.	3	-
9.	Линзы. Оптические системы. Глаз.	3	-
10.	Глаз как оптическая система. Контрольная работа по теме "Геометрическая оптика".	3	-
11.	Интерференция.	3	-
12.	Дифракция Френеля	3	-
13.	Дифракция Фраунгофера. Дифракционная решетка.	-	3
14.	Рубежный контроль по теме "Физическая оптика".	-	3
15.	Тепловое излучение. Квантовая оптика.	-	3
16.	Квантовая оптика. Фотоэффект и эффект Комптона	-	3
17.	Рубежный контроль по теме «Квантовая оптика».	-	3
18.	Атомные модели. Спектры атомов. Закон Мозли.	-	3
19.	Рентгеновское излучение. Основы рентгеноструктурного анализа и электронографии.	-	3
20	Волновые свойства частиц.	-	3
21.	Элементы квантовой механики. Контрольная работа по темам "Молекулярные спектры. Методы изучения структуры вещества"	-	3
22.	Опыт Штерна и Герлаха. Принцип Паули. Периодическая система Менделеева.	-	3
23.	Итоговое занятие по разделу "Элементы квантовой механики".	-	3
24.	Радиоактивность. Ядерные реакции.	-	3
25.	Ядерная физика и ее применение в медицине	-	3
	ИТОГО часов:	36	39

4.4. Тематический план семинаров

Не предусмотрено.

4.5. Тематический план лабораторных работ, практикумов

		Сем	естры
№	Название практикумов	№ 3	№ 4
		часов	часов
1.	Лабораторная работа: «Основы фотометрии. Опытная проверка закона Малюса».	3	-
2.	Лабораторная работа: «Определение фокусных расстояний тонких линз. Недостатки линз».	3	-
3.	Лабораторная работа: «Определение увеличения микроскопа и размеров микрообъектов».	3	-
4.	Лабораторная работа: «Определение разрешающей способности глаза и микроскопа».	3	-
5.	Лабораторная работа: «Определение показателя преломления жидкости рефрактометром».	3	-
6.	Лабораторная работа: «Изучение сахариметра и определение концентрации сахара в растворе».	3	-
7.	Лабораторная работа: «Определение длины волны с помощью дифракционной решётки».	-	3
8.	Лабораторная работа: «Изучение излучения абсолютно чёрного тела».	-	3
9.	Лабораторная работа: «Изучение внешнего фотоэффекта. Определение постоянной Планка».	-	3
10.	Лабораторная работа: «Градуировка спектроскопа. Определение длин волн спектральных линий».	-	3
11.	Лабораторная работа: «Изучение спектра атома водорода. Определение постоянной Ридберга».	-	3
	ИТОГО часов:	18	15

4.6. Занятия, проводимые в интерактивных формах

№	Название тем занятий	Интерактивные формы проведения занятий
1.	Все лабораторные работы (11 занятий)	Работа в малых группах

4.7. План самостоятельной работы студентов

№	Mo	Наименование раздела		Содержание самостоятельной работы			
	745	учебной дисциплины					
1	1	Электромагнитная	природа	Оптическая	схема	спектрофотом	етра. Особенности
	1.	света		работы	И	основные	характеристики

		спектрофотометров. Вращение плоскости
		поляризации в магнитном поле. Поляризационный
		микроскоп. Подготовка к лабораторным работам.
	Геометрическая оптика	Геометрическая оптика, основные понятия. Принцип
		Ферма. Тонкие линзы, ход лучей, построение
2.		изображений. Формула тонкой линзы. Сферические
2.		зеркала, ход лучей, построение изображений. Ход
		лучей в микроскопе. Основные характеристики
		микроскопа. Подготовка к лабораторным работам.
3.	Физическая оптика	Способы повышения контраста изображений в
		микроскопии. Разрешающая способность призмы.
		Подготовка к лабораторным работам.
	Квантовая оптика. Атомные модели. Спектры атомов	Абсолютно чёрное тело. Свойства равновесного
		излучения. Закон Стефана-Больцмана. Основные
4.		характеристики теплового излучения. История
		открытия фотоэффекта. Фотохимические реакции.
		Подготовка к лабораторным работам.
	Молекулярные спектры. Методы изучения структуры	Электронный микроскоп. Физические методы в
		химии: спектроскопические, дифракционные,
5.		оптические, использующие электрические и
	вещества	магнитные поля. Подготовка к лабораторным
		работам.
6.	Элементы квантовой	Подготовка к лабораторным работам.
	механики	

4.8. Научно-исследовательская работа студентов (НИРС)

Примерная тематика НИРС:

- 1. Изучение вращения плоскости поляризации органическими веществами, помещенными в магнитное поле.
- 2. Вращательные спектры молекул.
- 3. Колебательные спектры молекул.
- 4. Техника и методики электронной спектроскопии.
- 5. Рентгеноструктурный анализ.
- 6. Электронография.
- 7. Методы магнитного резонанса. Радиоспектрометры ЭПР и ЯМР.
- 8. Особенности расшифровки генома. Секвенаторы.

Формы НИРС:

- 1. Компьютерное моделирование процессов.
- 2. Изучение иностранной и отечественной научно-популярной литературы и статей из ведущих научных журналов.

3. Участие в подготовке докладов, выступления с докладами на конференциях.

5. Учебно-методическое обеспечение дисциплины

Учебно-методическое обеспечение образовательного процесса по дисциплине включает:

- методические указания для обучающихся
- методические рекомендации для преподавателей
- учебно-методические разработки для самостоятельной работы обучающихся по дисциплине.

Перечень учебно-методических разработок для самостоятельной работы по дисциплине «Оптика, атомная физика».

- 1. Описания лабораторных работ в электронном виде (формат pdf).
- 2. Подготовленный в электронном виде теоретический материал (формат pdf).

6. Библиотечно-информационное обеспечение

6.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

І. Основная.

- 1. Ремизов, А. Н. Медицинская и биологическая физика: учебник / А. Н. Ремизов. 4-е изд. ,испр. и перераб. Москва: ГЭОТАР-Медиа, 2022. 656 с. ISBN 978-5-9704-7012-1. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785970470121.html (дата обращения: 04.07.2022). Режим доступа: по подписке.
- 2. Медицинская и биологическая физика. Сборник задач [Электронный ресурс] / А. Н. Ремизов, А. Г. Максина М. : ГЭОТАР-Медиа, 2014. http://www.studmedlib.ru/book/ISBN97859704295561.html
- 3. Погожих, С. А. Физика. Сборник задач. Электромагнетизм, колебания и волны, оптика, квантовая и ядерная физика : учебное пособие / С. А. Погожих, С. А. Стрельцов. Новосибирск : НГТУ, 2020. 120 с. ISBN 978-5-7782-4163-3. Текст : электронный // ЭБС «Консультант студента» : [сайт].

- URL: https://www.studentlibrary.ru/book/ISBN9785778241633.html (дата обращения: 25.01.2022). Режим доступа: по подписке.
- 4. Архипов, В. П. Основы оптики, атомной и ядерной физики : учебное наглядное пособие / В. П. Архипов. Казань : КНИТУ, 2019. 116 с. ISBN 978-5-7882-2686-6. Текст : электронный // ЭБС «Консультант студента» : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785788226866.html (дата обращения: 25.01.2022). Режим доступа : по подписке.
- 5. Бондарев Б.В., Калашников Н.П., Спирин Г.Г. Курс общей физики. Кн.
- 2. Электромагнетизм. Оптика. Квантовая физика. Учебник для бакалавров. М.: Юрайт, 2013. 442 с.
- 6. Детлаф А.А., Яворский Б.М. Курс физики: Учебное пособие. М.: Академия, 2014. 720 с.

II. Дополнительная:

- 1. Леденев, А. Н. Физика. Кн. 4. Колебания и волны. Оптика. / Леденев А. Н. Москва : ФИЗМАТЛИТ, 2005. 256 с. ISBN 5-9221-0464-0. Текст : электронный // ЭБС «Консультант студента» : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN5922104640.html (дата обращения: 25.01.2022). Режим доступа : по подписке.
- 2. Материал для самостоятельного изучения по дисциплине «Оптика, атомная физика» [Электронный ресурс]: Учебное пособие для студентов 2 курса, обучающихся по специальности «Медицинская биохимия»./ А. Э. Байдин, М. М. Фатеев; ФГБОУ ВО ЯГМУ Министерства здравоохранения курсом Кафедра медицинской физики \mathbf{c} медишинской Ярославль: информатики. ЯГМУ, 2019. 74 c. http://gw.yma.ac.ru/elibrary/methodical_literature/atom_fiz.pdf
- 3. Кирьянов А.П., Кубарев С.И., Разинова С.М., Шапкарин И.П. Общая физика. Сборник задач: учебное пособие / под ред. И.П. Шапкарина. М.: КНОРУС, 2012. 304 с.
- 4. Климанов, В. А. Ядерная медицина. Радионуклидная диагностика: учебное пособие для вузов / В. А. Климанов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 307 с. (Высшее образование). ISBN 978-5-534-06485-8. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/492516 (дата обращения: 12.09.2022).
- 5. Колпачёв, А. Б. Квантовые явления в оптике : учебное пособие / А. Б. Колпачёв, О. В. Колпачёва. Ростов-на-Дону : ЮФУ, 2021. 129 с. ISBN

- 978-5-9275-3803-4. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785927538034.html (дата обращения: 15.11.2022). Режим доступа: по подписке.
- 6. Дмитриева, Н. Г. Общая физика. Геометрическая и волновая оптика : учебное пособие / Н. Г. Дмитриева, О. Н. Чайковская, Е. Н. Бочарникова. Томск : Издательский Дом Томского государственного университета, 2020. 184 с. ISBN 978-5-94621-916-7. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785946219167.html (дата обращения: 15.11.2022). Режим доступа : по подписке.
- 7. Заикин, А. Д. Когерентная оптика. Интерференция, дифракция, поляризация: учебное пособие / А. Д. Заикин, И. И. Суханов, О. Б. Янавичус. Новосибирск: НГТУ, 2019. 80 с. ISBN 978-5-7782-4078-0. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785778240780.html (дата обращения: 15.11.2022). Режим доступа: по подписке.
- 8. Штыгашев, А. А. Задачи по физике : электромагнетизм; электромагнитные волны; волновая и квантовая оптика; элементы квантовой физики и физики твердого тела; элементы ядерной физики : учебное пособие / А. А. Штыгашев, Ю. Г. Пейсахович. Новосибирск : НГТУ, 2019. 228 с. ISBN 978-5-7782-3853-4. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785778238534.html (дата обращения: 15.11.2022). Режим доступа : по подписке.
- 9. Сарина, М. П. Волновая и квантовая оптика: учебное пособие / М. П. Сарина, В. Н. Холявко. Новосибирск: НГТУ, 2019. 124 с. ISBN 978-5-7782-3813-8. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785778238138.html (дата обращения: 15.11.2022). Режим доступа: по подписке.
- 10. Буров, Л. И. Оптика. Решение задач: учебное пособие / Л. И. Буров, А. С. Торбацевыч, И. А. Капуцкая и др. Минск: Вышэйшая школа, 2018. 334 с. ISBN 978-985-06-2981-4. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9789850629814.html (дата обращения: 15.11.2022). Режим доступа: по подписке.
- 11. Дёмин, В. В. Фотометрия и ее применения : учебное пособие / Дёмин В. В. , Половцев И. Г. Томск : Издательский Дом Томского государственного университета, 2017. 344 с. ISBN 978-5-94621-600-5. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL :

- https://www.studentlibrary.ru/book/ISBN9785946216005.html (дата обращения: 15.11.2022). Режим доступа : по подписке.
- 12. Федяйнова, Н. И. Получение и исследование поляризованного света: Методические указания для выполнения лабораторных работ / Н. И. Федяйнова. Томск : Издательский Дом Томского государственного университета, 2017. 19 с. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/tgu_083.html (дата обращения: 15.11.2022). Режим доступа : по подписке.

6.2. Перечень информационных технологий

- 1. Мультимедийные технологии, включая демонстрацию презентаций, применение иллюстративного материала.
- 2. Электронная библиотечная система «Консультант студента» https://www.studentlibrary.ru/
- 3. База данных «Электронная коллекция учебных и учебно-методических материалов ЯГМУ» http://lib.yma.ac.ru/buki_web/bk_cat_find.php

6.3. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины:

- 1. «Единое окно», доступ к информационным ресурсам, «Физика» http://window.edu.ru/catalog/?p_rubr=2.2.74.6
- 2. Учебные материалы курса «Физика атомного ядра и частиц» http://nuclphys.sinp.msu.ru/
- 3. Научно-популярный физико-математический журнал «Квант» http://kvant.mccme.ru/rub/19B.htm
- 4. 5- EGE,RU, формулы по физике https://5-ege.ru/formuly-po-fizike-dlya-ege/
- 5. http://window.edu.ru/ (раздел: математика и естественно-научное образование → физика)
- 6. Электронно-библиотечная система « Юрайт» <u>www.urait.ru</u>
- 7. http://www.ph4s.ru/ (раздел: физика)