Федеральное государственное бюджетное образовательное учреждение высшего образования Ярославский государственный медицинский университет Министерства здравоохранения Российской Федерации ФГБОУ ВО ЯГМУ Минздрава России

Рабочая программа дисциплины ОБЩАЯ И МЕДИЦИНСКАЯ БИОФИЗИКА

Специальность 30.05.01 МЕДИЦИНСКАЯ КИБЕРНЕТИКА Форма обучения ОЧНАЯ

Рабочая программа разработана в соответствии с требованиями ФГОС ВО Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по специальности 30.05.03 Медицинская кибернетика и входит в состав Образовательной программы высшего образования — программы специалитета — по специальности 30.05.01 Медицинская биохимия.

Рабочая программа разработана на кафедре медицинской физики с курсом медицинской информатики

Заведующий кафедрой – Фатеев М.М., д-р биол. наук, профессор

Разработчики:

Фатеев М.М., заведующий кафедрой, д-р. биол. наук, профессор

Согласовано:

Декан лечебного факультета профессор

Филимонов В.И.

«15» июня 2023 года

Утверждено Советом по управлению образовательной деятельностью «15» июня 2023 года, протокол № 6

Председатель Совета по управлению образовательной деятельностью, проректор по образовательной деятельности и цифровой трансформации, доцент «15» июня 2023 года

Смирнова А.В.

(подпись)

1. Вводная часть

1.1. Цель освоения дисциплины – приобретение знаний по основным разделам общей и медицинской биофизики, получение представлений о биофизических методах исследования, используемых в практической медицине.

1.2. Задачи дисциплины:

- приобретение знаний об основных закономерностях биофизических процессов и явлений, протекающих на молекулярном, клеточном и организменном уровнях в норме и при патологии;
- формирование знаний по методологии биофизических исследований и использованию биофизических методов в диагностике и лечении;
- обучение умению оценивать эффективность фотобиологических процессов при воздействие ультрафиолетового и лазерного излучения;
- обучение основным биофизическим методам, применяемым для изучения фотобиологических процессов, исследования структуры биомолекул, межклеточных взаимодействий в норме и патологии, снятия биопотенциалов с поверхности тела человека, широко используемых в клинической практике (ЭКГ, ЭЭГ, РВГ, пульсография, миография).

1.3. Требования к результатам освоения дисциплины

Преподавание дисциплины направлено на формирование

общепрофессиональных компетенций:

- **ОПК-1.** Способен использовать и применять фундаментальные и прикладные медицинские, естественнонаучные знания для постановки и решения стандартных и инновационных задач профессиональной деятельности;
- **ОПК-3.** Способен использовать специализированное диагностическое и лечебное оборудование, применять медицинские изделия, лекарственные средства, клеточные продукты и генно-инженерные технологии, предусмотренные порядками оказания медицинской помощи;
- **ОПК-5.** Способен к организации и осуществлению прикладных и практических проектов и иных мероприятий по изучению биохимических и физиологических процессов и явлений, происходящих в клетке человека;

профессиональных компетенций:

- **ПК-5.** Способен организовывать и проводить научные исследования в области здравоохранения.

Таблица 1. Требования к результатам освоения дисциплины

	Индекс и	C	треосвания к результата	, , ,
№	номер компетенции	Содержание компетенции (или ее части)	Индикаторы достижения компетенций	Виды контроля
1.	ОПК-1	Способен использовать и применять фундаментальные и прикладные медицинские, естественнонаучные знания для постановки и решения стандартных и инновационных задач профессиональной деятельности	химических, математических и иных естественнонаучных методов исследований при решении профессиональных задач. ОПК1. ИД 2 — способен применять естественнонаучные знания на междисциплинарном	Текущий контроль успеваемости (контроль текущей успеваемости при проведении учебных занятий и рубежный контроль по завершению изучения дисциплинарных модулей), промежуточная аттестация
2.	ОПК-3	Способен использовать специализированное диагностическое и лечебное оборудование, применять медицинские изделия, лекарственные средства, клеточные продукты и генно-инженерные технологии, предусмотренные порядками оказания медицинской помощи	ОПК-3. ИД1 — информирован о принципах работы и возможностях современного диагностического и лечебного оборудования	Текущий контроль успеваемости (контроль текущей успеваемости при проведении учебных занятий и рубежный контроль по завершению изучения дисциплинарных модулей), промежуточная аттестация.

3.	ОПК-5	Способен к организации и	ОПК 5. ИД 1 – информирован об основных	Текущий контроль
		осуществлению прикладных и	закономерностях развития и жизнедеятельности	успеваемости (контроль
		практических проектов и иных	организма на основе биохимических и	текущей успеваемости
		мероприятий по изучению	физиологических процессов и явлений, происходящих	при проведении учебных
		биохимических и	в клетке, ткани, органе человека.	занятий и рубежный
		физиологических процессов и	ОПК 5. ИД 2 – использует лабораторное оборудование	контроль по завершению
		явлений, происходящих в	и измерительные приборы для проведения	изучения
		клетке человека	биохимических исследований и диагностики	дисциплинарных
			биохимических и физиологических процессов и	модулей), промежуточная
			явлений, происходящих в клетке человека	аттестация.
4.	ПК-5	Способен организовывать и	ПК-5. ИД1 – разрабатывает новые медицинские и	Текущий контроль
		проводить научные	биологические модели и методы и внедряет их в	успеваемости (контроль
		исследования в области	клиническую практику и управление здравоохранение	текущей успеваемости
		здравоохранения		при проведении учебных
				занятий и рубежный
				контроль по завершению
				изучения
				дисциплинарных
				модулей), промежуточная
				аттестация.

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к Обязательной части образовательной программы.

Для освоения дисциплины необходимы знания, умения и навыки, формируемые в ходе изучения дисциплин:

Дисциплина «Математический анализ»:

Знания: Математических методов решения задач с применением дифференциальных и интегральных исчислений.

Умения: Пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для решения математических задач.

Навыки: Владение базовыми технологиями преобразования информации: текстовые, табличные редакторы, поиск в сети Интернет.

Дисциплина «Теория вероятностей и математическая статистика»:

Знания: Методов параметрической и непараметрической статистики.

Умения: Пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для решения задач по статистике.

Навыки: Владение базовыми технологиями преобразования информации: текстовые, табличные редакторы, программами по статистической обработке данных, поиск в сети Интернет.

Дисциплина «Механика, электричество», «оптика, атомная физика»:

Знания: основных физических величин и законов механики и электричества Умения: опивать движение, составлять уравнения движения, изображать электрические и магнитные поля, описывать поведение заряженных частиц и систем заряженных частиц в них

Навыки: объяснять и количественно описывать явления природы

Дисциплина «Органическая и физическая химия»:

Знания: Общих законов строения, структуры и превращения химических веществ, в частности соединений углерода с использованием физических методов исследования.

Умения: Пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для решения поставленных задач по химии.

Навыки: Владение оптическими методами исследования веществ: калориметрией, спектроскопией, спектрофотометрией.

Дисциплина «Морфология, анатомия человека, гистология, питология»:

Знания: Строения человеческого тела, его органов и систем, строения тканей и клеток.

Умения: Пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для изучения морфологии человека.

Навыки: Владение основными цито- и гистологическими методами изучения строения клеток и тканей организма.

Дисциплина «Физиология»:

Знания: Основных законов и механизмов функционирования клеток, тканей, органов и систем органов, целого организма, а также механизмов адаптации его к меняющимся условиям окружающей среды.

Умения: Пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для изучения физиологии человека.

Навыки: Владение основными методами определения функционирования органов и систем человеческого тела.

Дисциплина «Биохимия»:

Знания: Химического состава и структуры веществ, содержащихся в живых организмах, путей и способов регуляции их метаболизма и энергетического обеспечения процессов, происходящих в клетке и организме.

Умения: Пользоваться учебной, научной, научно-популярной литературой, сетью Интернет для изучения биохимии человека.

Навыки: Владение методами хроматографии, спектрофотометрии для определения содержания биологически важных для организма веществ.

Дисциплина «Общая патология, патологическая анатомия, патофизиология»:

Знания: Причин и механизмов типовых патологических процессов, состояний и реакций, их проявления и значение для организма при развитии различных заболеваний; роли различных методов моделирования: экспериментального, на искусственных физических системах, логического, компьютерного, математического и др. в изучении патологических процессов.

Умения: проводить патофизиологический анализ клинико-лабораторных, экспериментальных, других данных и формулировать на их основе заключение о наиболее вероятных причинах и механизмах развития патологических процессов, принципах и методов их выявления.

Навыки: Системного подхода к анализу медицинской информации, основных методов оценки функционального состояний организма человека, анализа и интерпретации результатов современных диагностических технологий.

Знания, умения и навыки, формируемые в ходе освоения данной дисциплины, необходимы при изучении следующих дисциплин образовательной программы:

- Общая и медицинская радиобиология
- Медицинская биохимия
- Молекулярная биология
- Общая и клиническая иммунология
- Клиническая лабораторная диагностика
- Медицинские технологии
- Внутренние болезни
- Неврология
- Психиатрия

3. Объем дисциплины

3.1. Общий объем дисциплины

Общий объем дисциплины -10 зачетных единиц (360 академ. часов), в том числе:

- промежуточная аттестация в форме экзамена 36 академ. часов;
- контактная работа обучающихся с преподавателем 216 академ. часов;
- самостоятельная работа обучающихся 108 академ. часов.

3.2 Распределение часов по семестрам

Таблица 2. Распределение часов контактной работы обучающихся с преподавателем и самостоятельной работы обучающихся по семестрам

Вид учебной работы	Всего академ.часов	Распределение часов по семестрам		
	академ. часов	Сем. 5	Сем. 6	Сем. 7
1. Контактная работа обучающихся с преподавателем (аудиторная), всего	216	72	72	72

в том числе:	Х	X	X	X
Занятия лекционного типа (лекции)	57	18	21	18
Занятия семинарского типа, в т.ч.	159	54	51	54
Семинары	-	-	-	-
Практические занятия, клинические практические занятия	159	54	51	54
Лабораторные работы, практикумы	-	-	-	-
2. Самостоятельная работа обучающихся, всего	108	36	36	36

4. Содержание дисциплины.

4.1. Разделы учебной дисциплины и компетенции, которые должны быть освоены при их изучении

№	Наименование раздела учебной дисциплины	Содержание раздела в дидактических единицах (темы разделов)	Индекс и номер формируемых компетенций
1.	Фотобиофизика. Поглощение света в биологических системах.	Введение в курс общей и медицинской биофизики. Основные фотобиологические процессы и их стадии. Электронные переходы в биомолекулах при поглощении света и люминесценции. Количественные закономерности поглощения света. Закон Бугера-Ламберта-Бера. Спектры поглощения биомолекул. Особенности поглощения света в биологических системах. Дифференциальная и производная спектрофотометрия и области ее применения в биологии и медицине.	ОПК-1, ОПК - 5.
2.	Люминесценция в биологических системах	Зависимость потока и интенсивности фотолюминесценции от концентрации. Квантовый выход фотолюминесценции. Спектры фотолюминесценции и спектры ее возбуждения. Миграция энергии электронного возбуждения в биологических системах. Хемилюминесценция в	ОПК-1, ОПК - 5.

		E	
		биологических системах и ее активаторы. Биолюминесценция и биохемилюминесценция при перекисном окислении липидов, активации фагоцитов. Использование хемилюминесцентных методов в биологии и медицине. Биолюминесценция светляков и бактерий. Общие закономерности фотопревращений биомолекул. Кинетика необратимых и обратимых однофотонных	
3.	Первичные и начальные стадии фотопревращений биомолекул. Механизмы фотобиологических процессов при действии ультрафиолета.	фотопревращений биомолекул. Спектры действия фотопревращений биомолекул. Характеристика естественного УФ-излучения. Инактивирующее действие УФ-излучения на белки и спектры действия. Фотофизика и фотохимия сложных белков. Фотопревращения нуклеиновых кислот, липидов в биомембранах под действием УФ. Общие закономерности эритемы, индуцированной УФ. Канцерогенное действие УФ-излучения на кожу. Лечебное действие УФ- излучения на организм животных и человека.	ОПК-1, ОПК - 5.
4.	Фотофизические стадии зрения у позвоночных и фотосинтеза в галобактериях. Механизм сенсибилизированных фотобиологических процессов.	Спектры действия скотопического и фотопического зрения. Спектры поглощения родопсина и иодопсинов, палочек и колбочек. Цепь фотопревращений родопсина. Механизм фотопревращения родопсина в батородопсин. Фотосинтез АТФ в галобактериях. Общие закономерности сенсибилизированных фотопревращепий. Механизмы фотохимиотерапии опухолей и кожных болезней. Начальные стадии фотосинтеза в растениях.	ОПК-1, ОПК - 5.
5.	Молекулярная биофизика. Характеристика основных биополимеров и динамическое поведение	Конформация основных биологических макромолекул. Различия между клубком и глобулой. Объемные	ОПК-1, ОПК - 5.

	биологических	взаимодействия. Структура воды.	
	макромолекул в растворах.	Структура белков. Стерические	
	макромолскул в растворах.	карты. Самоорганизация	
		полипептидных цепей.	
		Взаимодействие белков с водой.	
		Особенности пространственной	
		организации нуклеиновых кислот.	
		Спектральный анализ.	
		Спектральный анализ. Спектроскопия в видимой и УФ-	
		области. Инфракрасная	
		спектроскопия.	
		Рентгеноструктурный анализ	
		белков. Метод флуоресцентных	
	Методы исследования	зондов. Спектроскопия	ОПК-1, ОПК-
6.	структуры основных	комбинационного рассеяния света.	3, ОПК-5, ПК-
	биомакромолекул	Методы кругового дихроизма и	5.
		дисперсии оптического вращения.	
		Ядерно-магнитный (ЯМР) и	
		электронный парамагнитный	
		(ЭПР) резонанс. Метод спиновых	
		меток и зондов.	
		История изучения строения	
		биологических мембран. Функции	
		мембран. Физико-химические	
	Биофизика клетки.	свойства мембранных липидов.	
7.	Молекулярная организация	Модельные бислойные липидные	ОПК-1, ОПК-
	и биофизические свойства	мембраны. Фазовые переходы в	3, ОПК-5.
	мембранных структур	фосфолипидном бислое. Белки и	
		углеводы мембран. Методы	
		исследования биомембран.	
		Виды транспорта. Пассивный	
		транспорт. Уравнение Фика.	
		Ионное равновесие. Поток ионов	
		через мембрану. Уравнение	
		Нернста-Планка. Диффузный и	
		равновесный потенциалы.	
8.	Транспорт веществ через	Потенциал покоя, Уравнение	ОПК-1, ОПК -
	мембрану	Гольдмана. Ионные токи.	5.
		Строение и работа ионных	
		каналов. Индуцированный	
		транспорт ионов. Активный	
		транспорт. Транспорт	
		макромолекул.	
		Распределение ионов между	
		водной и липидной фазами.	
	Enghannasana reserve	Стационарные потенциалы в	
9.	Биофизические механизмы	живой клетке. Методы измерения	ОПК-1, ОПК -
-	генерации мембранных	биопотенциалов. Ионная природа	5.
	потенциалов	потенциалов покоя и действия.	
		Равновесные потенциалы Нернста-	
		Доннана. Стационарный	

		потенциал: уравнение Ходжкина-	
		Гольдмана для расчета значений	
		потенциалов покоя и действия.	
		Электрогенный насос.	
		Биофизический механизм	
		генерации потенциала действия.	
		Кабельные свойства нервных	
		волокон. Скорость проведения	
		нервного импульса; телеграфное	
		уравнение. Проведение нервного	
		импульса через синаптические	
		мембраны. Природа	
		синаптического потенциала.	
		Роль повреждения различных	
		структур клетки в ее патологии.	
		Фосфолипазное повреждение	
		мембран. Перекисное окисление	
		мембранных липидов.	
		Осмотическое нарушение	
		структуры и функции клеток.	
		Электрический пробой как	
1.0	Физико-химические	механизм нарушения барьерной	ОПК-1, ОПК-
10.		функции мембран в патологии.	3, ОПК-5, ПК-
	механизмы патологии	1 2 2	5.
		Нарушение структуры и функции	
		мембран при адсорбции белков и	
		изменении состояния	
		липопротеидов. Нарушение	
		клеточной поверхности и	
		межклеточных взаимодействий.	
		Механизмы повреждения	
		нуклеиновых кислот.	
		Электрограммы и	
		пространственное распределение	
		потенциала как основные	
		характеристики внешних	
		электрических полей тканей и	
		органов. Эквивалентные	
		электрические схемы тканей и	
		органов. Электрический импеданс	
	Биофизика органов и	тканей, его частотная зависимость.	ОПК-1, ОПК-
11.	систем. Внешние	Описание электрической	3, ОПК-5, ПК-
	электрические поля тканей	активности клеток и тканей	5. 5. 5. 5. 5. 5. 5. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	и органов	токовым двухполюсным	
		(дипольным) генератором.	
		Физические основы регистрации	
		ЭКГ при различных отведениях.	
		Пространственные и плоские	
		векторные ЭКГ и методы их	
		измерения. Электрическая	
		активность пирамидных нейронов	
		новой коры как источник генеза	

		ЭЭГ. Формирование токовых	
		двухполюсных и	
		четырехполюсных	
		l =	
		(квадрупольных) генераторов в	
		пирамидных нейронах.	
		Статистические характеристики	
		фоновых ЭЭГ. Общая формула для	
		дисперсии ЭЭГ. Особенности	
		электрического поля гиппокампа:	
		пространственная зависимость	
		знака и амплитуды его	
		ритмических электрограмм. Генез	
		ритмических ЭЭГ в нейронных	
		сетях с возвратным торможением.	
		Механические модели	
		биообъектов. Упругие и	
		пластические деформации тканей и	
		органов; силы,	
		противодействующие деформации.	
		Механические свойства мышц и	
		костей. Механические свойства	
		стенки кровеносных сосудов.	
		Уравнение Лапласа для	
		статического состояния тонких	
	Пассивные механические	упругих оболочек. Механические	ОПК-1, ОПК -
12.	явления в тканях и органах	свойства крови. Роль агрегации	5.
		(межклеточных взаимодействий)	3.
		эритроцитов. Оптические и	
		электрические методы	
		исследования состояния крови.	
		Механические процессы в легких.	
		Механическая стабильность	
		альвеол. Роль сурфактанта в	
		изменении поверхностного	
		натяжения в альвеолах. Значение	
		поверхностных явлений при отеке	
		легких.	
		Реологические и	
		гемодинамические характеристики	
		крови. Линейная и объемная	
		скорость кровотока. Методы	
		измерения скорости движения	
		крови, ультразвуковой способ	ОПК-1, ОПК-
13.	Гемодинамика	определения скорости движения	3, OПК-5, ПК-
	т смодинамика	клеток в крови. Общие	5, OHK-3, HK-
		закономерности течения крови по	J.
		упругому сосуду. Модель Франка.	
		Пульсовая волна.	
		Гемодинамические телеграфные	
		уравнения и их решение при	
	1	изменении градиента давления во	

		времени по гармоническому	
		закону. Гемодинамические процессы в системе микроциркуляции. Систолический и минутный объем крови. Метод импедансной реографии для определения систолического	
		выброса крови.	
		Баллистокардиограммы. Различные виды мышечного	
14.	Механические явления при сокращении мышц. Транспорт веществ через эпителий.	Различные виды мышечного сокращения. Теплопродукция при укорочении исчерченных мышц. Уравнение Хила. Молекулярная организация сократительного аппарата мышечного волокна. Механизм мышечного сокращения. Векторная организация структуры эпителия в кишечнике и нефронах. Транспорт сахаров и аминокислот в тонкой кишке в комплексе с переносчиком: кинетика процесса и сопряжение с активным транспортом ионов натрия. Трансэпителиальный транспорт воды в кишечнике и нефронах. Механизм осмотического концентрирования мочи в нефронах. Клеточный механизм действия нефротропных диуретических веществ.	ОПК-1, ОПК- 5.
15.	Биофизика органов чувств	Природа прозрачности роговицы и хрусталика. Механизм светорассеяния в хрусталике при катаракте. Спектры поглощения зрительных клеток и их пигментов. Механизм и кинетические характеристики изомеризации родопсина. Электрический ответ фоторецепторной клетки. Основные свойства пахучих и вкусовых веществ. Особенности молекулярно-клеточной организации обонятельных и вкусовых клеток. Кинетические характеристики взаимодействия пахучих стимулов с хеморецепторами. Физическая природа звука. Частотная зависимость чувствительности уха. Механические свойства барабанной перепонки и	ОПК-1, ОПК- 3, ОПК-5, ПК- 5.

базилярной мембраны улитки.	
Методы исследования колебаний	
базилярной мембраны. Рецепция	
колебаний базилярной мембраны	
волосковыми клетками. Механизм	
распознавания звуков.	

4.2. Тематический план лекций

		(Семестры	Ы
No	Название тем лекций	№ 5	№ 6	№ 7
		часов	часов	часов
1	Введение в биофизику. Фотобиофизика. Электронные переходы при поглощении света в биомолекулах. Закон Бугера-Ламберта-Бера.	2	-	-
2	Закономерности поглощения света в биообъектах. Спектры поглощения биологически важных молекул	2	-	-
3	Явление люминесценции и ее основные законы. Спектры люминесценции. Механизмы миграции энергии	2	-	-
4	Основные характеристики хемилюминесценции. Биолюминесценция светляков, бактерий, при окислении липидов и активации фагоцитов	2	-	-
5	Общие закономерности фотохимических превращений биомолекул и спектры их действия.	2	-	1
6	Характеристика естественного УФ-излучения. Механизмы фотобиологических процессов при действии ультрафиолета. Фотоэритема и фотоканцерогенез.	2	-	-
7	Фотофизические стадии зрения у позвоночных и фотосинтеза ATФ в галобактериях. Механизм сенсибилизированных фотопревращений.	2	-	-
8	Молекулярная биофизика. Характеристика и структура основных биополимеров. Клубок и глобула. Объемные взаимодействия. Клатратная структура воды.	2	-	-
9	Структура белков и нуклеиновых кислот. Стерические карты. Динамическое поведение биологических макромолекул в растворах.	2	-	-
10	Биофизика клетки. Строение биологических мембран и их функции. Модели биологических мембран.	-	2	-
11	Методы исследования биомембран. Искусственные мембранные структуры и их практическое применение.	-	2	-
12	Транспорт веществ через мембрану. Пассивный транспорт веществ через мембрану: простая диффузия, транспорт ионов.	-	2	-
13	Поток ионов через мембрану. Уравнения Нернста-Планка, Гольдмана. Уравнение Уссинга-Теорелла для противоположных потоков. Диффузионный потенциал.	-	2	-
14	Строение ионных каналов и их классификация. Индуцированный транспорт ионов. Активный транспорт. Перенос через мембрану макромолекул и частиц.	-	2	-

			1	
15	Мембранные потенциалы: методы измерения. Равновесные потенциалы Нернста-Доннана. Уравнение Гольдмана-		2	-
	Ходжкина-Катца. Природа потенциала покоя.			
16	Биофизический механизм генерации потенциала действия.	-	2	-
	Кабельные свойства нервных волокон. Скорость			
	распространения нервного импульса, телеграфное			
	уравнение. Природа синаптического потенциала.			
17	Биофизика патологических состояний. Роль	_	2	-
	повреждения различных структур клетки в ее патологии.			
	Фосфолипазное повреждение мембран.			
18			2	
10	Перекисное окисление липидов. Клеточные системы	-	2	_
10	антирадикальной защиты.			
19	Электрический пробой мембран. Свободные радикалы в	-	2	-
	биологических системах.			
20	Свечение, сопровождающее биохимические реакции.	-	1	-
	Активированная хемилюминесценция и			
	биолюминесценция.			
21	Биофизика органов и систем. Медицинская биофизика.	_	_	2
	Электрические и магнитные поля человека. Физические			_
	основы электрокардиографии. Метод анализа			
	вариабельности сердечного ритма и его клиническое			
	значение.			
22	 			2
22	Электрическое поле головного мозга.	-	-	2
	Электроэнцефалография. Статистические характеристики			
	фоновых ЭЭГ. Внешнее электрическое поле пирамидных			
	нейронов коры головного мозга. Многодипольный			
	эквивалентный электрический генератор головного мозга.			
23	Гемодинамика. Реологические и гемодинамические	-	-	2
	характеристики крови. Основные законы гемодинамики.			
	Линейная и объемная скорость кровотока, гидравлическое			
	сопротивление. Методы измерения скорости движения			
	крови. Давление крови.			
24	Модель Франка. Пульсовая волна. Систолический и	-	-	2
	минутный объемы крови и методы их определения.			_
	Гемодинамические процессы в системе микроциркуляции.			
25	Анализ кровотока в большом круге кровообращения.	_	_	
23	Реография. Баллистокардиография.	_		
31				2
31	Механические явления при сокращении мышц. Мощность	-	_	2
22	и скорость сокращения. Механизм мышечного сокращения.			
33	Биофизика органов чувств. Классификация рецепторов и	-	-	2
	механизм передачи возбуждения в них. Биофизика органа			
	зрения: строение глаза, его преломляющие среды,			
	построение изображения на сетчатке, аккомодация глаза,			
	оптические недостатки.			
34	Молекулярный механизм зрения. Строение	-	-	2
	фоторецепторов. Зрительные пигменты. Трансдукция			
	сигнала в фоторецепторной клетке. Цветовое зрение.			
	Электроретинограмма и ее характеристика.			
35	Биофизика органа слуха. Параметры звуковой волны.	_	_	2
	Строение слухового анализатора. Теории восприятия			-
	звуков. Механизмы локализации источника звука.			
	звуков. племанизмы покализации источника звука.	L	L	

36	Биофизика органов обоняния и вкуса. Строение	-	-	2
	обонятельного и вкусового анализаторов. Обонятельные			
	рецепторные молекулы. Трансдукция сигнала в			
	обонятельной и вкусовой рецепторной клетке.			
•	ИТОГО часов:	18	21	18

4.3. Тематический план практических занятий

	Название тем практических занятий		Семестры		
No			№ 6	№ 7	
		часов	часов	часов	
1	Введение в общую и медицинскую биофизику. Предмет и задачи биофизики. Фотобиофизика. Основные стадии фотобиологических процессов. Электронные переходы при поглощении света в биомолекулах. Характеристики ЭМИ:	3	-	-	
	длина волны, частота, период, волновое число, эйнштейн, энергия, импульс, поток излучения, интенсивность света, доза излучения.				
2	Закон Бугера-Ламберта-Бера. Спектрофотометрия. Спектры пропускания и спектры поглощения.	3	-	-	
3	Закономерности поглощения света в многокомпонентных биообъектах. Спектры поглощения биологических важных молекул.	3	-	-	
4	Люминесценция. Основные законы люминесценции.	3	-	-	
5	Спектры люминесценции и спектры возбуждения люминесценции биообъектов. Механизмы миграции энергии.	3	-	-	
6	Хемилюминесценция. Биолюминесценция светляков, бактерий, при окислении липидов и активации фагоцитов. Общие закономерности фотохимических превращений биомолекул. Исследование спектров действия фотопревращений биомолекул.	3	-	-	
7	Рубежный контроль № 1; закон Бугера-Ламберта-Бера, люминесценция, хемилюминесценция и их спектры.	3	-	-	
8	Характеристики естественного ультрафиолетового излучения. Кинетика и спектры действия фотоинактивации белков. Фотохимия и фотофизика сложных белков.		-	-	
9	Фотопревращения нуклеиновых кислот и липидов под действием УФ.		-	-	
10	Фотоэритема и фотоканцерогенез. Механизмы фотосинтеза витамина D_3 и фототрансформации билирубина в коже. Механизм загара.		-	-	
11	Механизм сенсибилизированных фотобиологических процессов.	3	-	-	
12	Рубежный контроль № 2: воздействие ультрафиолетового излучения на биологические объекты.	3	-	-	

13	Молекулярная биофизика. Характеристика основных биополимеров и их структура. Различия между клубком и глобулой. Объемные взаимодействия. Водородная связь. Свойства воды. Клатратная структура воды.	3	-	-
14	Гидрофобные взаимодействия. Электростатические силы. Силы Ван-дер-Ваальса. Поворотная изомерия и стерические ограничения. Особенности пептидных групп. Стерические карты.	3	-	-
15	Вторичная структура белков. Переходы спираль-клубок. Самоорганизация полипептидных цепей. Классификация белков. Моделирование пространственной организации белков по их первичной структуре. Взаимодействие белков с водой и формы связанной воды.	3	-	-
16	Особенности пространственной организации нуклеиновых кислот.	3	-	-
17	Методы исследования структуры основных биомакромолекул.	3	-	-
18	Рубежный контроль № 3: молекулярная биофизика.	3	-	-
19	Методы определения молекулярной массы, размера и формы частиц.	-	3	-
20	Биофизика клетки. Строение биологических мембран и их функции.		3	-
21	Модели биологических мембран. Методы исследования биомембран.		3	-
22	Искусственные мембранные структуры и их практическое применение.		3	-
23	Общая характеристика процессов мембранного транспорта. Пассивный транспорт веществ через мембрану.	-	3	-
24	Перенос ионов через мембрану. Электрохимический потенциал ионов. Механизм диффузии, электродиффузия. Уравнение Нернста-Планка. Классификация типов ионного транспорта.	-	3	-
25	Рубежный контроль № 4: строение и функции биологических мембран, пассивный транспорт веществ через мембрану.		3	-
26	Уравнение Гольдмана для потоков ионов через мембрану. Сопряженные ионные потоки. Индуцированный транспорт ионов. Активный транспорт ионов. Перенос через мембрану макромолекул и частиц.		3	-
27	Классификация ионных каналов. Строение и работа ионных каналов.	-	3	-
28	Механизмы генерации потенциалов покоя. Потенциалы Нернста, Доннана и Гольдмана-Ходжкина. Вклад электрогенной помпы. Методы измерения электрической активности клетки.	-	3	-

29	Потенциал действия и его фазы. Кинетика ионных токов при фиксированном напряжении на мембране. Уравнение Ходжкина. Распространение потенциала действия по нервному волокну. Телеграфное уравнение.		3	-
30	Рубежный контроль № 5: электрогенез в биомембранах.		3	-
31	Физико-химические механизмы патологии. Физико- химические факторы, вызывающие повреждение клетки. Роль нарушений структуры и функций биомембран в клеточной патологии. Роль фосфолипаз в клеточной патологии.		3	-
32	Нарушение свойств мембран при гипоксии. Действие Ca ²⁺ на мембраны митохондрий.	-	3	-
33	Свободные радикалы, их источники в живых клетках. Цепное (перекисное) окисление липидов. Методы изучения свободнорадикальных реакций: спиновые ловушки и хемилюминесценция. Роль ПОЛ в развитии различных патологических состояниях.		3	-
34	Электрическая стабильность мембран, ее нарушение в патологии. Роль повреждения мембран в развитии некроза и апоптоза. Свечение, сопровождающее биохимические реакции.	-	3	-
35	Рубежный контроль № 6: физико-химические механизмы патологии.	-	3	-
36	Биофизика органов и систем. Медицинская биофизика. Электрические и магнитные поля человека. Физические основы электрокардиографии. Векторкардиография.		-	3
37	Клеточные основы генеза ЭКГ. Методика регистрации ЭКГ. Компьютерный расчет ЭКГ.	-	-	3
38	Электрическое поле головного мозга. Метод исследования электрической активности головного мозга – электроэнцефалография.	-	-	3
39	Механизм генеза ритмических ЭЭГ. Статистические характеристики ЭЭГ. Методика регистрации ЭЭГ. Компьютерный расчет ЭЭГ.	1	-	3
40	Рубежный контроль № 7: электрические и магнитные поля у человека.	-	-	3
41	Пассивные механические явления в тканях и органах. Механические модели биообъектов. Механические свойства мышц и костей.		-	3
42	Механические свойства стенки кровеносных сосудов. Механические процессы в легких.		-	3
43	Гемодинамика. Механические свойства крови.	-	-	3
44	Законы Пуазейля. Методы измерения скорости движения крови. Пульс. Ультразвуковое допплеровское измерение скорости кровотока. Сфигмография.	-	-	3

45	Систолический и минутный объемы крови и методы их определения. Гемодинамические процессы в системе микроциркуляции.	-	-	3
46	Анализ кровотока в большом круге кровообращения. Реография. Методика регистрации реограммы. Компьютерный расчет реограммы. Баллистокардиография.		-	3
47	Рубежный котроль № 8: биофизика системы кровобращения.	-	-	3
48	Механические явления при сокращении мышц. Мощность и скорость сокращения. Механизм мышечного сокращения. Электромиография.	-	-	3
49	Транспорт веществ через эпителий органов и тканей. Определение активных зон кожи методом регистрации электропроводности.	-	-	3
50	Биофизика органов чувств. Биофизика органа зрения. Фотофизические стадии зрения у позвоночных и фотосинтеза в галобактериях. Спектры поглощения зрительных клеток и их пигментов. Электроретинограмма.	-	-	3
51	Биофизика органа слуха. Основные понятия, используемые в биоакустике. Строение и функции отделов слухового анализатора. Механизмы локализации источников звука.	-	-	3
52	Биофизика органов вкуса и обоняния. Строение анализаторов. Трансдукция сигнала в обонятельной рецепторной клетке. Особенности трансдукция сигнала рецепторной клетки на вкус	-	-	3
53	Рубежный котроль № 9: биофизика мышц и органов чувств.	-	-	3
	ИТОГО часов:	54	51	54

4.4. Тематический план семинаров

Не предусмотрено.

4.5. Тематический план лабораторных работ, практикумов – Не предусмотрено.

4.6. Занятия, проводимые в интерактивных формах

No	Название тем занятий	Интерактивные формы проведения занятий
1.	Занятие №1. Введение в общую и медицинскую биофизику. Фотобиофизика. Основные стадии фотобиологических процессов.	«Биофизика и фотомедицина». Видео- лекция акад. РАН Ю.А. Владимирова
2.	Занятие №2. Закон Бугера-Ламберта- Бера. Спектрофотометрия.	Решение ситуационных задач

3.	Занятие №4. Люминесценция.	«Применение люминесценции». Видео-	
3.	Основные законы люминесценции.	лекция акад. РАН Ю.А. Владимирова	
4.	Занятие №5. Спектры люминесценции и спектры возбуждения люминесценции биообъектов. Механизмы миграции энергии.	«Люминесцентная микроскопия». Видео-лекция к.х.н., доцента Е.В. Проскуриной	
5.	Занятие №14. Гидрофобные взаимодействия. Электростатические силы. Силы Ван-дер-Ваальса.	Решение ситуационных задач	
6.	Занятие №15. Вторичная структура белков. Переходы спираль-клубок.	Решение ситуационных задач	
7.	Занятие №17. Методы исследования структуры основных биомакромолекул.	«Биофизические методы». Видео- лекция к.х.н., доцента Е.В. Проскуриной	
8.	Занятие №24. Перенос ионов через мембрану. Электрохимический потенциал ионов. Механизм диффузии, электродиффузия.	з й Решение ситуационных задач	
9.	Занятие №27. Классификация ионных каналов. Строение и работа ионных каналов.		
10.	Занятие №28. Механизмы генерации потенциалов покоя. Потенциалы Нернста, Доннана и Гольдмана-Ходжкина.	Решение ситуационных задач	
11.	Занятие №29. Потенциал действия и его фазы. Кинетика ионных токов при фиксированном напряжении на мембране. Уравнение Ходжкина.	Моделирование работы гигантского аксона кальмара	
12.	Занятие №18. Перекисное окисление липидов. Повреждение компонентов биологических мембран при патологических процессах.	<u> </u>	
13.	Занятие №45. Систолический и минутный объемы крови и методы их определения. Гемодинамические процессы в системе микроциркуляции.	Моделирование работы системы кровообращения на примере модели Франка	

4.7. План самостоятельной работы студентов

№	Наименование раздела учебной дисциплины	Содержание самостоятельной работы
1.	Фотобиофизика	Спектральный анализ. Спектроскопия в видимой и ультрафиолетовой области. Люминесцентный метод — инструмент для изучения механизмов переноса энергии. Спектрофлуорометрия. Флуоресцентные зонды и метки и их использование в медицине для анализа веществ. Флуоресцентная микроскопия. Применение УФИ в медицине. Фотоэритема и

		фотоканцерогенез. Механизм загара.
		Фотохимиотерапия опухолей и кожных болезней.
2.	Молекулярная биофизика	Инфракрасная спектроскопия. Спектроскопия комбинационного рассеяния света. Электронный парамагнитный резонанс (ЭПР). Метод спиновых меток, зондов и ловушек. Спектроскопия ядерного магнитного резонанса (ЯМР). ЯМР-томография как диагностический метод. Дисперсия оптического вращения и круговой дихроизм. Основные представления о молекулярных массах биополимеров и методах их определения: осмометрия, вискозометрия, метод светорассеяния, электрофорез белков в полиакриламидном геле,
3.	Биофизика клетки	гель-хроматография. Модели биологических мембран. Методы исследования биологических мембран: биохимические, физиологические, генетические, биофизические: дифракционные, резонансные (ЯМР, ЭПР), оптические, микрокалориметрия, моделирования и получения искусственных мембран. Искусственные мембранные структуры и их применение в медицине и фармации. Мембранный транспорт веществ и методы его измерения: микроэлектродная техника, метод фиксации потенциала, техника пэтч-клампа.
4.	Биофизика патологических состояний	Первичное и вторичное повреждение клетки. Основные повреждающие факторы. Стратегия изучения механизма действия неблагоприятных факторов. Нарушение функций клеточных структур. Методы определения работоспособности митохондрий. Основные факторы, приводящие к нарушению функции митохондрий. Свободные радикалы и методы их изучения: биохимические и биофизические (хемилюминесценция, метод ЭПР, спиновые ловушки). Биологические последствия пероксидации липидов. Клеточные системы антирадикальной защиты. Электрический пробой мембран и методы его изучения. Хемилюминесценция и возможности лабораторного клинического анализа. Использование биолюминесцентного анализа для определения функционирование клеток и клеточных структур.
5.	Биофизика органов и систем	функционирование клеток и клеточных структур. Электрические и магнитные поля человека и методы их исследования: метод ЭКГ, ВКГ, вариабельности сердечного ритма (ВСР), ЭЭГ, ВП, нейронной активности; их значение для диагностики заболеваний. Биомеханика мышц, костей, кровеносных сосудов, легких. Электромиография. Гемодинамика и методы ее исследования: методы определения кровяного давления, скорости кровотока, пульсография, реовазография,

баллистокардиография; применение в медицине. Микроциркуляция и факторы на ее влияющие. Особенности транспорта веществ через эпителий и ткани, методы его определения. Биофизика органов чувств и методы их исследования: остроты зрения, поля зрения, цветового восприятия, бинокулярного зрения, электроретинограмма; методы исследования органа слуха, вкуса и запаха; их значение для диагностики заболеваний.

4.8. Научно-исследовательская работа студентов (НИРС)

Примерная тематика НИРС:

- 1. Спектральный анализ. Спектроскопия в видимой и ультрафиолетовой области, и ее применение в диагностике заболеваний.
- 2. Инфракрасная спектроскопия в медицине.
- 3. Спектроскопия комбинационного рассеяния света и ее применение для молекулярного анализа веществ.
- 4. Электронный парамагнитный резонанс (ЭПР). Достоинства и недостатки метода, его использование в медицине и фармации. Методы спиновых меток, ловушек и зондов.
- 5. Использование метода ядерного магнитного резонанса (ЯМР) для анализа строения биомолекул и его применение для постановки диагноза в медицине.
- 6. Методы дисперсии оптического вращения и кругового дихроизма и их применения для анализа вторичной структуры белков.
- 7. Рентгеноструктурный анализ как метод анализа структуры вещества.
- 8. Методы определения молекулярных масс биополимеров.
- 9. Использование искусственных мембранных структур в медицине.
- 10.Методы, применяемые для исследования свойств биомембран, их проницаемости и функций. Их использование в медицине.
- 11. Хемилюминесценция и биолюминесценция как инструмент в медико-биологических исследованиях.
- 12.Методы, применяемые в медицине для анализа функционирования системы кровообращения (ЭКГ, ВКГ, вариабельность сердечного ритма (ВСР), пульсография, фонокардиография, реовазография, допплерография).
- 13. Электрофизиологические методы исследования функционирования нервной системы.
- 14. Методы исследования дыхательной и мышечной систем организма, используемые в медицине для диагностики заболеваний.
- 15. Методы изучения функционирования органов чувств и их применение

в медицине.

Формы НИРС:

- 1. Изучение специальной литературы и другой научно-практической информации по актуальным вопросам, сбор, обработка, анализ и систематизация полученных данных, написание и защита рефератов.
- 2. Участие в подготовке докладов, выступления с докладами на конференциях.

4.9 Курсовые работы

Курсовые работы не предусмотрены

5. Учебно-методическое обеспечение дисциплины

Учебно-методическое обеспечение образовательного процесса по дисциплине включает:

- методические указания для обучающихся;
- методические рекомендации для преподавателей;
- учебно-методические разработки для самостоятельной работы обучающихся по дисциплине:
 - 1. Спектральный анализ. Спектроскопия в видимой и ультрафиолетовой области. Качественный и количественный анализ и применение его в медицине.
 - 2. Использование люминесцентного анализа в медицине для количественного определения биологически важных веществ, для проверки фарм. средств, для определения болезнетворных бактерий и др.
 - 3. Спектрофлуорометрия. Флуоресцентные зонды и метки и их использование в медицине для анализа веществ.
 - 4. Флуоресцентная микроскопия. Области применения и использование в медицине.
 - 5. Применение общего УФИ для изучения загара. Искусственный загар в солярии «за» и «против».
 - 6. Применение УФИ в дерматологии (лечение рожистого воспаления, трофических язв, витилиго, кожных гнойничковых заболеваний и др.).
 - 7. Применение УФИ в онкологии (ФТД фотодинамическая терапия).
 - 8. Применение УФИ для профилактики простудных, вирусных (в том числе гриппа, герпеса), инфекционных заболеваний, стимуляции иммунитета.

- 9. Использование фотосенсибилизаторов в различных областях медицины.
- 10. Анализ веществ с помощью инфракрасной спектроскопии.
- 11. Применение электронного парамагнитного резонанса (ЭПР) для анализа веществ и его применение в медицине.
- 12.ЯМР-томография как диагностический метод.
- 13. Основные методы исследования молекулярных масс биополимеров.
- 14. Искусственные мембраны и их использование в медицине.
- 15. Вариабельность сердечного ритма (ВСР) как диагностический метод.
- 16.Методы, используемые для диагностики функционирования нервной системы.
- 17. Применение хемилюминесценции и биолюминесценции в медицине.
- 18. Звуковые и ультразвуковые методы исследования в клинике: перкуссия, аускультация, аудиометрия, фонокардиография; эхография, сканирование, сонография, допплерография; ультразвуковая терапия в офтальмологии, хирургии и нейрохирургии, дерматологии, стоматологии, онкологии, гинекологии, косметологии.

6. Библиотечно-информационное обеспечение

6.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины.

Основная литература:

- 1. Артюхов, В. Г. Биофизика: учебник для вузов / Под ред. В. Г. Артюхова Москва: Академический Проект, 2020. 294 с. (Фундаментальный учебник) ISBN 978-5-8291-3027-5. Текст: электронный // ЭБС «Консультант студента»: [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785829130275.html (дата обращения: 25.01.2022). Режим доступа: по подписке
- 2. Рощупкин Д.И., Фесенко Е.Е., Новоселов В.И. Биофизика органов: Учебное пособие. М.: Наука, 2000. 255 с.

Дополнительная литература:

- 1. Алексеева, Н. В. Практикум по биофизике. В 2 ч. Ч. 1 / Алексеева Н. В. и др. ; под ред. А. Б. Рубина. 2-е изд. Москва : Лаборатория знаний, 2020. 195 с. Систем. требования: Adobe Reader XI ; экран 10". (Учебник для высшей школы) ISBN 978-5-00101-774-5. Текст : электронный // ЭБС «Консультант студента» : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785001017745.html
- 2. Антонов В.Ф., Коржуев. Физика и биофизика. Курс лекций. М.: ГЭОТАР-

- Медиа, 2007. 240 c.
- 3. Антонов, В. Ф. Физика и биофизика : учебник / В. Ф. Антонов, Е. К. Козлова, А. М. Черныш. 2-е изд. , испр. и доп. Москва : ГЭОТАР-Медиа, 2015. 472 с. ISBN 978-5-9704-3526-7. Текст : электронный // ЭБС «Консультант студента» : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785970435267.html (дата обращения: 25.01.2022). Режим доступа : по подписке
- 4. Антонов, В. Ф. Физика и биофизика. Практикум : учебное пособие / Антонов В. Ф., Черныш А. М., Козлова Е. К., Коржуев А. В. Москва : ГЭОТАР-Медиа, 2012. 336 с. ISBN 978-5-9704-2146-8. Текст : электронный // ЭБС «Консультант студента» : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785970421468.html (дата обращения: 25.01.2022). Режим доступа : по подписке.
- 5. Артюхов В.Г. (ред.). Биофизика: Учебник для вузов. М.: Академический Проект, 2013. 294 с.
- 6. Фатеев М.М. Биофизические методы исследования: Учебное пособие для студентов, обучающихся по специальности «медицинская биохимия» Ч.1, Основные методы анализа веществ, применяемые в квантовой и молекулярной биофизике [Электронный ресурс] / М.М. Фатеев, Ярославль: ЯГМУ, 2018. 82 с.: рис., табл. http://gw.yma.ac.ru/elibrary/methodical_literature/bmi1.pdf
- 7. Фатеев М. М. Биофизические методы исследования: Учебное пособие для студентов 3 курса, обучающихся по специальности «Медицинская биохимия» Ч. 2, Основные методы изучения функционирования клеток [Электронный ресурс] / М. М. Фатеев, ФГБОУ ВО ЯГМУ МЗ РФ, Кафедра медицинской физики с курсом медицинской информатики.. Ярославль: ЯГМУ, 2019. 53 с. http://gw.yma.ac.ru/elibrary/methodical_literature/biofis_issled.pdf
- 8. Фатеев М.М. Биофизические методы исследования. Часть 3. Основные методы, применяемые при изучении биофизики сложных систем. [Электронный ресурс] / М.М. Фатеев, ФГБОУ ВО ЯГМУ МЗ РФ, Кафедра медицинской физики с курсом медицинской информатики.. Ярославль: ЯГМУ, 2022. 64 с. http://gw.yma.ac.ru/elibrary/methodical_literature/683.pdf

6.2 Перечень информационных технологий:

- 1. Электронная библиотечная система «Консультант студента» https://www.studentlibrary.ru/
- 2. База данных «Электронная коллекция учебных и учебно-

методических материалов ЯГМУ» http://lib.yma.ac.ru/buki_web/bk_cat_find.php

6.3 Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины:

- 1. Новости науки по биофизике https://elementy.ru/novosti_nauki/t/1579643/Biofizika
- 2. Журнал «Биофизика» http://www.biofizika.psn.ru/ru/
- 3. Ресурсы кафедры медицинской биофизики МГУ http://www.fbm.msu.ru/sites/biophys/projects/pubbook.php