# федеральное государственное бюджетное образовательное учреждение высшего образования

Ярославский государственный медицинский университет Министерства здравоохранения Российской Федерации ФГБОУ ВО ЯГМУ Минздрава России

# Фонд оценочных средств для проведения промежуточной аттестации по дисциплине ФАРМАЦЕВТИЧЕСКАЯ БИОТЕХНОЛОГИЯ

Магистратура по направлению подготовки 33.04.01 Промышленная фармация

Форма обучения ОЧНАЯ

Фонд оценочных средств разработан в соответствии с требованиями ФГОС

Фонд оценочных средств для проведения промежуточной аттестации «Промышленная фармацевтическая обучающихся ПО дисциплине технология» составлен в соответствии с требованиями федерального государственного образовательного стандарта высшего образования – направлению подготовки 33.04.01 Промышленная магистратура ПО фармация и входит в состав Образовательной программы высшего образования – программы магистратуры по направлению подготовки 33.04.01 Промышленная фармация.

Фонд оценочных средств разработан на кафедре фармакогнозии и фармацевтической технологии.

Заведующий кафедрой – Сидоров Александр Вячеславович, доктор мед. наук, доцент.

## Разработчики:

Онегин Сергей Владимирович, доцент кафедры фармакогнозии и фармацевтической технологии ЯГМУ, к.фармац.н., доцент,

Трубников Алексей Александрович, доцент кафедры фармакогнозии и фармацевтической технологии ЯГМУ, к.фармац.н., доцент,

Парфенов Андрей Александрович, доцент кафедры фармакогнозии и фармацевтической технологии ЯГМУ, к.фармац.н., доцент,

Чикина Ирина Владимировна, старший преподаватель кафедры фармакогнозии и фармацевтической технологии ЯГМУ.

### Согласовано:

Утверждено Советом по управлению образовательной деятельностью «16» сентября 2022 года, протокол № 1

Председатель Совета по управлению образовательной деятельностью, проректор по образовательной деятельности и цифровой трансформации, доцент

(подпись)

«16» сентября 2022 года

## 1. Форма промежуточной аттестации – экзамен.

# 2. Перечень компетенций, формируемых на этапе освоения дисциплины

# общепрофессиональные компетенции:

 способен к организации, управлению и руководству работой производственного, регуляторного или исследовательского подразделения в соответствии с установленными требованиями и лучшими практиками (ОПК-1);

# профессиональные компетенции:

– способен осуществлять технологические процессы и применять специализированное оборудование при промышленном изготовлении лекарственных средств (ПК-1).

Содержание компетенций с указанием индикаторов достижения компетенций представлено в рабочей программе по соответствующей дисциплине (таблица 1).

3. Показатели и критерии оценивания сформированности компетенций, шкалы оценивания

# Показатели и критерии оценивания сформированности компетенций, шкалы оценивания

| Этап промежуточной аттестации | Компетенции,<br>сформированность<br>которых<br>оценивается | Показатели                                                                | Критерии сформированности компетенций                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Тестирование               | ОПК-1, ПК-1                                                | Число ответов на задания в тестовой форме, соответствующих эталону ответа | Число ответов на задания в тестовой форме, соответствующих эталону ответа, — более 70% (Могут быть другие варианты, может быть приведена дифференцированная шкала начисления баллов в зависимости от числа правильных ответов)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2. Решение ситуационных задач | ОПК-1, ПК-1                                                | Правильность ответов на вопросы задачи                                    | 5 баллов: даны полные исчерпывающие ответы на все вопросы задачи, в ходе ответов обучающийся продемонстрировал высокий уровень теоретических знаний, полученных в ходе изучения основной и дополнительной литературы, умение применять полученные знания в ходе решения конкретных практических ситуаций; 4 балла: даны ответы на все вопросы задачи, в ходе ответов обучающийся продемонстрировал уровень знаний, достаточный для решения типовых клинических ситуаций, в ходе ответов на отдельные вопросы задачи (1-2) возможны несущественные ошибки и неточности; 3 балла: даны безошибочные ответы на основные вопросы задачи, в ходе ответа возможны отдельные несущественные ошибки и неточности; 2 балла: ответы на основные вопросы задачи содержат принципиальные ошибки; 1 балл: обучающийся продемонстрировал отдельные малозначимые представления об обсуждаемом вопросе, 0 баллов: отказ от ответа. |

| 3. Собеседование | ОПК-1, ПК-1 | Правильность ответа на теоретический | 5 баллов: дан полный исчерпывающий ответ на        |
|------------------|-------------|--------------------------------------|----------------------------------------------------|
| по теоретическим |             | вопрос                               | теоретический вопрос, в ходе ответа обучающийся    |
| вопросам         |             |                                      | продемонстрировал высокий уровень теоретических    |
|                  |             |                                      | знаний, полученных в ходе изучения основной и      |
|                  |             |                                      | дополнительной литературы;                         |
|                  |             |                                      | 4 балла: дан ответ на теоретический вопрос, в ходе |
|                  |             |                                      | ответа обучающийся продемонстрировал хороший       |
|                  |             |                                      | уровень теоретических знаний, в ходе ответа были   |
|                  |             |                                      | допущены несущественные ошибки и неточности;       |
|                  |             |                                      | 3 балла: дан ответ на основные моменты             |
|                  |             |                                      | теоретического вопроса, в ходе ответа были         |
|                  |             |                                      | допущены отдельные существенные ошибки и           |
|                  |             |                                      | неточности;                                        |
|                  |             |                                      | 2 балла: ответ на теоретический вопрос содержит    |
|                  |             |                                      | принципиальные ошибки;                             |
|                  |             |                                      | 1 балл: обучающийся продемонстрировал отдельные    |
|                  |             |                                      | малозначимые представления об обсуждаемом          |
|                  |             |                                      | вопросе,                                           |
|                  |             |                                      | 0 баллов: отказ от ответа.                         |

# 4. Типовые контрольные задания и иные материалы для оценки знаний, умений, навыков, формируемых на этапе освоения дисциплины

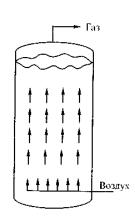
# 4.1. Задания в тестовой форме

# Формируемая компетенция – ОПК-1

Какими свойствами должны обладать промышленные штаммы

- А) отсутствием токсических веществ
- Б) способностью роста на жидких питательных средах
- В) невысокой скоростью роста
- Г) низкой концентрацией токсических веществ
- В биотехнологии стерилизации соответствует
- А) уничтожение всех микроорганизмов и их покоящихся форм
- Б) выделение бактерий из природного источника
- В) уничтожение патогенных микроорганизмов
- Г) уничтожение спор микроорганизмов

Наилучшим субстратом, обеспечивающим наиболее высокую скорость роста, для многих микроорганизмов является:


- А) лактоза
- Б) сахароза
- В) глюкоза
- Г) все перечисленные

Биореактор предназначен для:

- 1) культивирования микроорганизмов А) верно 1,2,3,4
- 2) хранения микроорганизмов Б) верно 1,2,4,5
- 3) накопления биомассы В) верно 1,3,4
- 4) синтеза целевого продукта Г) верно все
- 5) очистки целевого продукта

Назовите тип биореактора, изображенного на схеме:

- А) реакторы с механическим перемешиванием
- Б) реакторы с ультразвуковым перемешиванием
- В) барботажные колонны
- Г) эрлифтные реакторы
- Д) ректификационные колонны



Стерилизация оборудования биотехнологического производства осуществляется:

- А) ультрафиолетовым облучением
- Б) химической дезинфекцией
- В) острым паром
- Г) глухим паром
- Д) горячим воздухом

Производственные питательные среды для биотехнологического производства изготавливаются на основе воды

- А) для инъекций
- Б) водопроводной
- В) деминерализованной
- Г) стерильной

Иммобилизация клеток продуцентов НЕ целесообразна в случае, если целевой продукт:

- А) растворим в воде
- Б) нерастворим в воде
- В) локализован внутри клетки
- Г) им является биомасса

Инактивацию протеаз при получении ферментов осуществляют обработкой:

- А) кальция карбонатом
- Б) перекисью водорода
- В) ЭДТА
- Г) протеолизином

К биореакторам, используемым в биотехнологических процессах на основе иммобилизованных ферментов, относится:

- А) реактор колоночного типа
- Б) эрлифтный реактор
- В) барботажная колонна
- Г) эрлифтная колонна

Процесс постепенного наращивания культуры микроорганизмов от опытных образцов до промышленного производства с использованием различной аппаратуры в биотехнологической промышленности — это:

- А) ферментирование
- Б) культивирование
- В) масштабирование
- Г) субкультивирование

Барботер биореактора необходим для:

- А) выведения из биореактора отработанного воздуха
- Б) аэрации культуральной жидкости
- В) нагревания культуральной жидкости
- Г) слива культуральной жидкости из биореактора

Выберите из списка типы биореакторов, применяемых в биотехнологическом процессе:

1) реакторы с механическим перемешиванием A) верно 1,2,5 2) реакторы с ультразвуковым перемешиванием B) верно 1,3,4,5 3) барботажные колонны B) верно 1,3,4 4) эрлифтные реакторы Г) верно все

5) ректификационные колонны

Определите последовательность фильтров, применяемых для очистки воздуха для биореакторов:

фильтр предварительной очистки
 фильтр индивидуальной очистки
 фильтр грубой очистки
 3) фильтр грубой очистки

A) 1,3,2
Б) 1,2,3
В) 3,1,2

Назовите отличительный признак эрлифтного реактора:

- А) механическое перемешивание культуральной жидкости
- Б) циркуляция среды за счет потока воздуха
- В) циркуляция среды за счет ультразвука
- Г) циркуляция среды за счет тепловой конвекции

# Формируемая компетенция – ПК-1

Асептический разлив инъекционных биотехнологических препаратов должен осуществляться в чистых помещениях в зоне

- A) A
- Б) В
- B) C
- Г) Д

Определение «Биотехнология — это использование биопроцессов и биообъектов для целенаправленного воздействия на человека и окружающую среду»:

- А) верно
- Б) не верно

Лекарственным препаратом, который впервые зарегистрирован в российской федерации, качество, эффективность и безопасность которого доказаны на основании результатов доклинических и клинических исследований, называется

- А) фармакопейный стандартный образец
- Б) биоаналоговый лекарственный препарат
- В) референтный лекарственный препарат
- Г) воспроизведенный лекарственный препарат

Придаваемое лекарственному средству или лекарственному растительному сырью удобное для применения состояние, при котором достигается необходимый лечебный эффект – это:

- А) лекарственная форма
- Б) лекарственный препарат
- В) лекарственное вещество
- Г) лекарственный сбор

Лекарственным препаратом, фармацевтическая субстанция которого является рекомбинантной нуклеиновой кислотой, позволяющей осуществлять изменение генетической последовательности, называется

- А) генотерапевтический лекарственный препарат
- Б) биоаналоговый лекарственный препарат
- В) взаимозаменяемый лекарственный препарат
- Г) воспроизведенный лекарственный препарат

Производство и контроль качества лекарственных средств в РФ регламентирует правовой акт:

- А) Федеральный закон № 86-ФЗ «О лекарственных средствах» от 22.06.98.
- Б) ОСТ 64-504-96 «Контроль качества лекарственных средств на промышленных предприятиях и организациях. Основные положения»
- В) ГОСТ Р 52249-2009 «Правила производства и контроля качества лекарственных средств»
- Г) Приказ Минпромторга № 916 «О надлежащей производственной практике»

Производство, основанное на изготовлении промышленной продукции с помощью рекомбинантной и гибридомной технологией, а также перевиваемых линий клеток – это:

- А) микробиологическое производство
- Б) биотехнологическое производство
- В) бактериологическое производство
- Г) фармацевтическое производство

Лекарственные средства, предназначенные для иммунопрофилактики, иммунотерапии и иммунодиагностики инфекционных и неинфекционных болезней и аллергических состояний человека (животных) – это:

- А) интерфероны
- Б) вакцины
- В) медицинские (ветеринарные) иммунобиологические препараты
- Г) анатоксины

Аттестованный уполномоченным органом источник клеток-продуцентов, используемый для получения продукции — это:

- А) рабочий банк клеток
- Б) стандартный образец
- В) посевной материал
- Г) посевной банк клеток

Документированное подтверждение соответствия оборудования, технологического процесса, методов контроля требованиям нормативной документации, свидетельствующее, что процесс, оборудование, методика действительно приводит к ожидаемым результатам — это:

- А) контаминация
- Б) валидация
- В) стандартизация
- Г) аудит

Для получения протопластов из бактериальных клеток используется

- А) лизоцим
- Б) «улиточный фермент»
- В) трипсин
- Г) папаин
- В технологии получения рекомбинантных белков стадия отбора трансформированных клеток с рекомбинантной ДНК характеризуется
- А) использованием гена-маркера
- Б) синтезом и выделением рекомбинантных белков
- В) трансформированием рекомбинантного вектора в клетку хозяина
- Г) встраиванием гена в вектор ДНК

Начальной стадией в технологии получения рекомбинантных белков является

- А) выбор клетки-донора для выделения нужного гена
- Б) выбор клонирующего вектора
- В) выбор селективного маркера
- Г) ферментативное расщепление нужного белка рестриктазами

Какую аминокислоту целесообразнее получать химическим синтезом и гидролизом белоксодержащего сырья

- А) глицин
- Б) лизин
- В) триптофан
- Г) аргинин

Преимущество микробиологического получения аминокислот перед химическим синтезом состоит в

- A) возможности получения L-аминокислот на основе возобновляемого сырья
- Б) получении рацемической смеси аминокислот
- В) отсутствии необходимости очистки аминокислот от побочных продуктов
- Г) получении модифицированных аминокислот

# 4.2. Перечень ситуационных задач Формируемая компетенция – ОПК-1

Задача №1. Вы технолог биотехнологического производства — производство терапевтических белков (инсулина). Вам необходимо составить технологическую схему получения инсулина с помощью Е. coli с указанием необходимого оборудования на каждой стадии. Выделите возможные критические стадии технологического процесса, предложите на этих стадиях контролируемые показатели.

Задача №2. Биосинтез ЛС или БАВ в условиях производства требует создания стерильных условий при многостадийнности всего процесса в целом. При этом для успешного осуществления биосинтеза необходимо не допустить контаминации целевого продукта. В условиях поставленной задачи укажите:

- в чем выражается многостадийность биосинтеза;
- способы предотвращения контаминации целевого продукта;
- схему и оборудование для очистки и стерилизации воздуха, используемую в процессе биосинтеза.

Задача №3. Перед Вами как оператором биотехнологического производства аминокислот поставлена задача провести синтез лизина. Какое оборудование Вы для этого выберете, каким методом будете проводить ферментацию. Опишите устройство и назначение основных элементов биореактора. Какие параметры при синтезе лизина необходимо контролировать?

Задача №4. Вам предстоит использовать поверхностный метод культивирования продуцентов ферментов. Каким образом Вы будете засевать культуру, как она будет при этом расти и как будете осуществлять аэрацию культуры. Опишите основные преимущества поверхностного культивирования. По каким показателям Вы будете проводить стандартизацию ферментного препарата.

Задача №5. Вам необходимо провести процесс биотрансформации дигитоксина в дигоксин за счет дегидроксилирования углерода-12. Какие биообъекты для этого Вы будете использовать. Каким образом иммобилизация биообъектов будет влиять на процессы биотрансформации? Опишите условия и оборудование используемое для данного процесса.

# Формируемая компетенция – ПК-1

Задача №1. Вы генный инженер, ваша задача создать плазмиду. Что представляют из себя плазмиды, их роль в генной инженерии? Какое оборудование и «инструменты» вы будете для этого использовать? Опишите сущность процесса клонирования для получения рекомбинантной ДНК с применением плазмид и рестриктаз. Понятие вектора в генной инженерии.

Задача №2. Какое свойство растительных клеток как инженертехнолог биотехнологического производства Вы будете использовать для введения их в культуру. Опишите ростовой цикл каллусной клетки за весь период своей жизнедеятельности? Какую роль играет протопластирование в культивировании растительных клеток? Вам необходимо вырастить первичный каллус — как Вы это будете делать, какие условия необходимо соблюсти?

Задача №3. В клетках микроорганизмов рода Согупевасterium и Вrevibacterium в процессе микробиологического синтеза из аспарагиновой кислоты в синтезируется три аминокислоты, в том числе лизин, имеющий промышленное значение. Как биотехнолог какой биообъект Вы будете использовать для данного процесса? Какие еще аминокислоты образуются в клетках микроорганизмов рода Согупевасterium и Вrevibacterium из аспарагиновой кислоты наряду с лизином? Метод совершенствования биообъекта, применяемый при синтезе лизина.

Задача №4. Каким образом можно провести быстрое размножение здоровых саженцев растений в больших количествах. Как называется данный метод. Приведите условия данного процесса. Можно ли для данного процесса использовать любые такни растения учитывая свойство тотипотентности?

Задача №5. Определите лекарственную субстанцию по описанию технологического процесса, выделите биотехнологические и химические этапы производства, назовите биообъекты биотехнологических этапов:

« ... продуцент Nocardia mediterranea обработан многократно ренгеновскими и ультрафиолетовыми лучами, а также азотсодержащими веществами с селекцией на каждом этапе. Сверхпродуцент помещен в ферментатор на жидкую питательную среду, содержащую крахмал, соевую муку, кукурузный экстракт, хлорид натрия и карбонат кальция. После завершения процесса культивирования целевой продукт извлечен из культуральной жидкости органическим растворителем, реэктрагирован в водную фазу и подвергнут распылительной сушке. Полупродукт передан в цех химической трансформации....»

## 4.3. Теоретические вопросы

# Формируемая компетенция – ОПК-1

- 1. Что такое биотехнология? Перечислите основные этапы развития биотехнологии. Какие продукты получают методом биотехнологии и в каких отраслях народного хозяйства они находят применение?
- 2. Перечислите основные нормативные документы, регламентирующие биотехнологическое производство.
- 3. Что такое биообъект, продуцент, суперпродуцент, донор, донатор? Дайте определение понятиям штамм, вирулентность, патогенность, контаминация, рабочий и посевной банк клеток, вакцина, сыворотка и др.
- 4. Как классифицируют биообъеты в зависимости от происхождения и выполняемых функций?
- 5. Перечислите основные группы лекарственных преператов, получаемых биотехнологическим способом.
- 6. Какие соединения относятся к первичным и вторичным метаболитам? Какова роль первичных и вторичных метаболитов в биотехнологическом производстве?

- 7. Назовите и охарактеризуйте основные слагаемые биотехнологических процессов.
- 8. Перечислите обязательные компоненты питательных сред. Какие еще компоненты могут входить в их состав? Перечислите оборудование для приготовления питательных сред.
- 9. Что такое «биореактор», его назначение? Перечислите основные узлы биореакторов. Назовите классификации биореакторов в зависимости от режимов культивирования и устройства.
- 10. Дайте сравнительную характеристику биореакторов, используемых в биотехнологическом производстве.
- 11. Назовите этапы подготовки посевного материала. Охарактеризуйте понятие «масштабирование».
- 12.Перечислите и охарактеризуйте методы стерилизации и очистки оборудования, питательных сред и воздуха.
- 13. Как классифицируют процессы биосинтеза в зависимости от технологических параметров?
- 14. Назовите методы выделения, очистки и сушки готового продукта в биотехнологическом производстве.
- 15. Какие механизмы используют для регулирования синтеза ферментов?
- 16. Что такое «ретроингибирование»? Где используется данный процесс?
- 17.В чем заключается строгий аминокислотный контроль метаболизма микроорганизмов?
- 18. Что такое «ферменты» и какова их роль в жизнедеятельности человека и микроорганизма?
- 19. Классифицируйте ферменты в зависимости от вида катализируемых реакций.
- 20. Какие продуценты используют для биотехнологического получения ферментов?
- 21. Назовите особенности культивирования продуцентов ферментов.
- 22. Какие методы выделения и очистки ферментов используют в биотехнологическом производстве?
- 23. Что такое «иммобилизация»?
- 24. Назовите преимущества, которые дает иммобилизация ферментов и живых клеток.
- 25. Приведите примеры, когда нецелесообразно использование метода иммобилизации.
- 26. Какие методы иммобилизации используются для ферментов и живых клеток?

- 27. Назовите особенности, преимущества и недостатки каждого метода иммобилизации.
- 28. Каким образом используются иммобилизованные ферменты для промышленного получения лекарственных средств?
- 29. Назовите преимущества, которые дает иммобилизация, при использовании ферментов в качестве лекарственных систем.
- 30.Приведите примеры иммобилизованных ферментов и лекарственных средств, используемых в медицине.
- 31.Селекция как метод совершенствования биообъектов. Мутации, их использование в биотехнологии. Типы мутаций.
- 32.Мутации. Индуцированный мутагенез. Мутагенные факторы. Проблемы популяционной устойчивости биообъектов и пути их решения.
- 33. Клеточная и генная инженерия: определение, методы. Протопластирование (метод слияния протопластов), как один из методов клеточной инженерии. Понятия, этапы.
- 34. Как используется метод протопластирования в биотехнологии растительных клеток. Что такое «протопласт», «гомокарион», «гетерокарион»?
- 35.Перечислите методы получения протопластов. Как и в каких условиях проводят их слияние? Назовите методы выделения гибридов.
- 36. Генная инженерия. Основные термины и определения. Методы введения чужеродных генов: конъюгация, трансдукция, трансформация. Ферменты, используемые в генной инженерии.
- 37.Опишите процесс получения продуцентов рекомбинантных белков с помощью метода генной инженерии. По каким показателям проводится контроль качества рекомбинантных белков?
- 38.Понятие «вектор», его виды. Ферменты, используемые для сборки рекомбинантной ДНК. Механизмы переноса генетической информации.
- 39. Что такое геномика? Назовите и охарактеризуйте основные направления геномики.
- 40. Что такое протеомика? Приведите примеры использования протеомики в медицине и фармации.

### Формируемая компетенция – ПК-1

- 1. Назовите способы промышленного получения аминокислот. Какие преимущества и недостатки имеют данные способы? Какие продуценты используются для получения аминокислот? Назовите особенности культивирования продуцентов аминокислот.
- 2. Дайте определение витаминам. Какую роль витамины играют в жизнедеятельности человека?
- 3. Назовите виды классификаций витаминов. Приведите примеры.
- 4. Какие витамины в настоящее время получают биотехнологическим синтезом?
- 5. Назовите методы, виды продуцентов и особенности промышленного получения витаминов.
- 6. Что биотранформация? Назовите основные такое реакции Опишите биотранформации. стадию биотрансформации при аскорбиновой кислоты. Как получении используют метод биотранформации при получении стероидных соединений?
- 7. Что такое «рекомбинантные белки»? Назовите основные группы продуцентов рекомбинантных белков. По каким показателям проводится контроль качества рекомбинантных белков?
- 8. Что такое инсулин, его строение? Какова его роль в организме человека?
- 9. Назовите и опишите методы получения инсулина. Какие препараты инсулина выпускаются современным фармацевтическим производством?
- 10. Что такое интерферон? Виды интерферона. Какова их роль в организме человека? Назовите и опишите методы получения интерферонов.
- 11. Что такое соматотропин и соматостатин? Какова их роль в организме человека? Назовите и опишите методы получения соматотропина.
- 12. Что такое факторы роста тканей? Виды факторов роста тканей и их роль в организме человека. Назовите и опишите методы получения факторов роста тканей.
- 13. Что такое «антибиотик»? Назовите гепотезы возникновения их у микроорганизмов. Назовите и приведите примеры видов классификаций антибиотиков. Назовите основных продуцентов антибиотиков. К каким группам микроорганизмов они относятся?
- 14. Назовите основные механизмы действия антибиотиков. Приведите примеры.

- 15. Какие способы получения антибиотиков существуют? Расскажите о биотехнологии промышленного получения антибиотиков.
- 16. Какие условия должны соблюдаться в процессе биотехнологического синтеза антибиотиков?
- 17. Назовите методы выделения и очистки антибиотиков. Какую роль в биотехнологическом процессе получения антибиотиков играю предшественники? Приведите примеры.
- 18. Какие механизмы защиты от собственных антибиотиков используют клетки-продуценты?
- 19. Что такое «резистентность»? Назовите причины и опишите механизм возникновения антибиотикорезистентности.
- 20.Опишите методы борьбы с резистентностью микроорганизмов к антибиотикам. Приведите примеры.
- 21. Что такое вакцины? Какие классификации вакцин существуют?
- 22. Назовите классификацию вакцин в соответствии с природой специфического антигена.
- 23. Какие токсины микроорганизмов и с какой целью используются в медицине?
- 24. Охарактеризуйте биотехнологическое получение вакцин.
- 25. Что такое сыворотки? С какой целью применяются сыворотки в медицине. Как получают сыворотки?
- 26. Что такое бактериофаги? Опишите механизм действия бактериофагов. Назовите примеры их использования.
- 27. Что такое моноклональные антитела? Назовите и охарактеризуйте возможные способы применения моноклональных антител.
- 28. Что такое диагностикумы? Назовите их классификацию и область применения.
- 29. Каков вклад Х. Фехтинга, К. Рехингера и Г. Хаберландта в развитие биотехнологии растительных клеток.
- 30. Что означает термин «тотипотентность клеток»? Дайте определение «каллусной ткани». Какие существуют типы каллусных тканей?
- 31. Назовите и опишите основные этапы получения каллусной культуры растительных клеток. Какие условия должны обязательно соблюдаться при получении каллусной культуры?
- 32. Какие существуют способы культивирования растительных клеток? Назовите их преимущества и недостатки. Перечислите и охарактеризуйте факторы, влияющие на рост и продуктивность растительных клеток в культуре.

- 33. Дайте определение понятиям «ростовой цикл» и «инокулюм». Перечислите основные фазы роста клеток и расскажите о каждой из них. Перечислите основные направления использования культуры растительных клеток.
- 34.Для каких целей используется культура растительных клеток в сельском хозяйстве? Для каких целей используется культура растительных клеток в пищевой промышленности? Для каких целей используется культура растительных клеток в медицине и фармации?
- 35.Как используется метод протопластирования в биотехнологии растительных клеток.
- 36. Что такое «протопласт», «гомокарион», «гетерокарион»? Перечислите методы получения протопластов. Как и в каких условиях проводят их слияние? Назовите методы выделения гибридов.
- 37. Назовите методы получения трансгенных растений. Для чего их получают?
- 38. Назовите методы иммобилизации растительных клеток и укажите их особенности. Опишите использование иммобилизованных растительных клеток для получения биологически активных веществ.
- 39. Дайте определение понятиям «пробиотик», «пребиотик». Как их классифицируют? Какую роль пробиотики и пребиотики играют в коррекции последствий дисбактериоза.
- 40.Перечислите и охарактеризуйте стадии биотехнологического производста пробиотиков. Назовите методы контроля в производстве препаратов пробиотиков.